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ONO INVARIANTS OF IMAGINARY
QUADRATIC FUNCTION FIELDS

JAEHYUN AHN* AND HWANYUP JUNG**

ABSTRACT. In this paper, we define the Ono invariants of imagi-
nary quadratic function fields and obtained several results concern-
ing the relations between the Ono invariants and the class numbers.

1. Introduction

Let K be an imaginary quadratic number field. Let hx be the class
number of K. In [3], Sasaki defined a natural number px associated
to K, which is called the Ono invariant of K, and reformulated the
Rabinovitch’s theorem as hx = 1 if and only if px = 1. He also proved
that hx > pg and hx = 2 if and only if px = 2.

The aim of this paper is to define the Ono invariant of imaginary
quadratic function field and prove similar results. Let k = [F4(t) be the
rational function field over the finite field F; and A = Fy[t]. Let oo be the
infinite place of k associated to 1/t. Let K be a (geometric) quadratic
extension of k. We say that K is real if oo splits in K and imaginary
otherwise. Let K be an imaginary quadratic extension of k. Let Ok be
the integral closure of A in K and hx be the ideal class number of O.
In this paper, following Sasaki [3], we define the Ono invariant px of K
and prove several similar results.

Received January 25, 2012; Accepted April 17, 2012.

2010 Mathematics Subject Classification: Primary 11R58, 11R60.

Key words and phrases: imaginary quadratic function fields, Ono invariants, class
numbers.

Correspondence should be addressed to Hwanyup Jung, hyjung@chungbuk.ac.kr.

This work was supported by the research grant of the Chungbuk National Uni-
versity in 2011.



284 Jaehyun Ahn and Hwanyup Jung
2. Odd characteristic case

In this section we assume that ¢ is odd. Let v be a generator of Fy.
For any 0 # N € A, let sgn(N) denote the leading coefficient of N.
Then any imaginary quadratic extension K of k£ can be written uniquely
as K = k(v/D), where D is a square free of odd degree if co ramifies in
K and D is a square free of even degree with sgn(D) = ~ if oo is inert
in K. The integral closure O of A in K is O = A[vV/D].

2.1. Ideals

Let N be the norm map of K into k. Any ideal a of Ok can be
written as a = [T, R + Sv/D] := TA + (R 4+ SvD)A, where T is the
monic polynomial of the smallest degree which is contained in a and S
is the monic polynomial of the smallest degree such that R+ Sv/D € a
for some R € A. Moreover, we may assume that deg R < degT and T', R
are divisible by S, and we have Na = (T'S) = T'SA.

LEMMA 2.1. Let T, R € A with T monic. Then the A-module [T, R+
VD] becomes an ideal of O if and only if T|/N'(R + /D). In this case
the followings hold:

(i) If T = T Ty, then [T, R+ /D] = [T1, R +/D|[Ts, R + /D).
(ii) If0 < degT < deg D, then [T, R ++/D] is not a principal ideal.

Proof. Suppose that a is an ideal of Of. Since N(R+ vD) = (R +
VD)(R —+/D) € a, N(R+ /D) = AT + B(R + v/D) for some A, B €
A. Then B = 0 and AT = N(R + v/D). Conversely, assume that
N(R + /D) is divisible by T, say N (R + D) = AT. Then, for any
a=X+YVD € Ok, we have oT = (X —~YR)T +TY(R+ VD) € a
and a(R + VD) = —AYT + (X + YR)(R + VD) € a. Hence a is
an ideal of Ok. (i) is obvious. For (ii), we assume that a = [T, R +
VD] is a principal ideal (o). Then o = TX + (R + v/D)Y for some
X, Y € A, so Na=TA =N(a)A =T(TX?+2RXY + AY?)A, where
TA = R?> - D. Thus we get (T'X + RY)? = DY? + ¢T for some ¢ €
F,. If Y = 0, we have T?X? = ¢T, which is impossible. Suppose
Y # 0. Consider the case that K is a ramified imaginary quadratic
extension. Since degT < deg D, deg(DY? + ¢T') = deg D + 2degY
is odd, but deg((TX + RY)?) = 2deg(TX + RY) is even, which is
a contradiction. Now, consider the case that K is a inert imaginary
quadratic extension. Since ¢T' = (TX + RY)? — DY? and D is of even
degree, we have sgn(D) = v, sgn(TX + RY)? = ?>™ and sgn(DY?) =
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A2l £ sen(T X+ RY)? for some m, n. Thus deg((TX+RY)?—~DY?) =
max{deg(TX +RY)? deg DY?} > deg DY? = deg D+2degY > degT,
which contradicts to the fact that degT < deg D. O

LEMMA 2.2. Let T, R € A with T monic, T|N (R++/D) and deg N (R+
VD) < 2deg D. Then the ideal [T, R + /D) is principal if and only if
T=1orT=N(R+ VD).

Proof. If T = 1, then [T,R + VD] = [1,V/D] = Ok, and, if T =
N(R+ VD) = (R+ vD)(R — VD), then [T, R+ VD] = (R + vD).
Conversely, let T/ = N(R+/D)/T, so TT' = N(R+ VD) = R? — D.
Since deg(R? — D) < 2deg D, degT < deg D or degT’ < deg D. Since
[T,R+ VD|[T',R+ D] = [TT',R+ VD] = (R+ VD), [T, R + VD]
is also principal. If degT < degD, since [T, R + /D] is principal,
T =1 (by Lemma 2.1 (ii)). If deg7” < deg D, similarly, 7" = 1, so
T =N(R+ VD). O

2.2. Ono invariant px

Let w(N) be the number of irreducible factors (counting multiplicity)
of N € A. Define the polynomial fp(x) = x?> — D. Then the Ono
invariant pr of K is defined to be

pk = max {w(fp(R)) : deg R < deg D}.
THEOREM 2.3. hg > pk.

Proof. By definition, px = w(fp(R)) for some R with deg R <
deg D — 1. Note that fp(R) = R> — D = N(R + /D) with deg N(R +
VD) < 2deg D. We may assume that n = w(fp(R)) > 1. Let fp(R) =
Py --- P, be the (monic) irreducible factorization of fp(R). Write a; =
[P;, R 4+ v/D], which is an ideal of O for 1 < i < n. We claim
that the ideal classes (a1), (ajaz), ..., (ajas - - a,) are mutually distinct.
Then hxg > n = pg follows immediately. It remains to prove the
claim. Assume that (ajaz---a;) = (ajaz---a;) for some ¢ < j. Then
(ai+1---aj) = ([Prr1--- P R+ VD)) = 1, 50 [Piv1 -+~ P, R+ VD is a
principal ideal. But, taking 7 = Piy1--- Pj|fp(R) = N(R + /D), we
have that [T, R+ VD] = [Pi41--- Pj, R+ v/D] is a principal ideal with
T #1,N(R + /D), which contradicts to Lemma 2.2. O

LEMMA 2.4. (Minkowski’s Lemma) Any ideal class of K contains
an integral ideal a such that Na < g, where gk is the genus of K.
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Note that the genus gx of K = k(v/D) is given by gx = % if

deg D—2
2

oo ramifies in K and gx = if oo is inert in K.

THEOREM 2.5. px =1 if and only if hg = 1.

Proof. By Theorem 2.3, it is clear that if hx = 1, then px = 1. Now
we will show that if pr = 1, then hg = 1. Suppose that hx > 2. Let p be
a non-principal ideal having the smallest deg Np. It can be shown that
p is a prime ideal and Np = P is a monic irreducible. By Lemma 2.4,
we have deg P < %. Write p = [P, R + v/D] for some R € A with
deg R < deg P and P|N(R + v/D). Then deg N(R + /D) = deg(R? —
D) < 2deg D. Since pg = 1, fp(R) = N(R++/D) = R?>— D must be an
irreducible. Hence, P = N (R ++/D) and p = [P,R+ /D] = (R+ VD)
is principal, which is a contradiction. O

THEOREM 2.6. px = 2 if and only if hg = 2.

Proof. If hiy = 2, then pg < hxg = 2, so px = 1 or 2. But, by
Theorem 2.5, we have pg = 2. Conversely, assume that pg = 2. Then
hx > pr = 2. Let p, q be non-principal prime ideals with Np = P, Nq =
Q and deg P,deg@Q < %. Then P, are monic irreducible ones.
We can show that pq is principal.

Now we will show that every ideal class is of order < 2. Let p be an
ideal such that p? is non-principal and has the smallest degree. Then p is
a prime ideal and Np = P is a monic irreducible with deg P < %.
By the above argument, p? is principal. Thus, every ideal class of K
is of order < 2, so the ideal class group of K is an elementary abelian
2-group. Now suppose hx > 4. Let p be a non-principal ideal having the
smallest degree and ¢ a non-principal ideal such that g is not equivalent
to p and has the smallest degree. As above, pq is principal. Since p?, g2
are principal, q is equivalent to p, which is a contradiction. Therefore

hg = 2. O

3. Even characteristic case

In this section we assume that ¢ is even. Any quadratic extension

K of k can be written as K = k(a), where « is a root of x? + x = g—;

with Dy € A, Dy € AT, ged(D1,Ds) = 1 ([1, 2]). Let p(x) = x2 +x
be the Artin-Schreier operator. We say that u = g—; is normalized if
it satisfies the following conditions: (i) if Dy = [[7_; P{*, then each
e; is odd, (ii) if deg D1 > deg Do, then deg Dy — deg D5 is odd, (iii)
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if deg D1 = deg Dy, then sgn(D1) ¢ p(F,). We say that the extension
K /K is real, inert imaginary or ramified imaginary according as oo splits,
inert or ramifies in K. Then, the extension K/k is real, inert imaginary
or ramified imaginary according as deg D1 < deg D3, deg D1 = deg Do
or deg Dy > deg Ds.

Let G = G(D1/D) = [T, PV, Q = Q(D1/Ds) =TI;, Pi and
y = Ga. Then Og = Afy] = A + yA = [1,y] is the integral closure of A
in K. Note that y is a zero of x> + Gx+ D;Q = 0. In addition, a prime
P of A is ramified in K if and only if P divides G, and g(K) = deg G—1
by [4, Prop. II1.7.8.(d)].

3.1. Ideals

For any integral ideal a of Ok, we have a = [T, R+ Sy] =A-T + A -
(R+ Sy), where T is the monic polynomial of the smallest degree which
is contained in a and S is the monic polynomial of the smallest degree
such that R+ SGa € a for some R € A. Moreover, we may assume that
deg R < degT and T, R are divisible by S, and Na = (T'S) = TSA.

The following two lemmas are even characteristic version of Lemma
2.1 and Lemma 2.2, whose proofs are almost the same as those ones in
these lemmas.

LEMMA 3.1. Let T, R € A with T monic. Then the A-module [T, R+
y] becomes an ideal of Oy if and only if TIN'(R+y) = R?>+ RG + D1Q.
In this case the followings hold:
(i) If T' =TTy, then [T, R+ y] = [T1, R+ y][Tg, R+ y]
(ii) If 0 < deg T < deg D1Q, then [T, R + y] is not a principal ideal.

LEMMA 3.2. Let T, R € A with T monic, T|N (R+vy) and deg N'(R+
y) < 2deg D1Q. Then the ideal [T, R + y| is principal if and only if
T=1lorT=N(R+y).

3.2. Ono invariant of K

Define the polynomial f(p, p,)(x) = x? + Gx + D1Q. Then the Ono
invariant p(p, p,) of K is defined to be

P(Dy,D;) = max {w(f(Dth)(R)) :deg R < deg DlQ}.
THEOREM 3.3. hx > p(p,,D,)-

Proof. By definition, pp, p,y = w(f(p,,p,)(R)) for some R with
deg R < deg D1Q — 1. Note that fp, p,)(R) = R+ GR + DiQ =
N(R+vy) and deg N (R+y) < 2deg D1Q because deg G = deg D2Q/2 <
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deg D1Q/2. We may assume that n = w(f(p, p,)(R)) = 1. Let f(p, p,)(R)
= Q1 Qy be the (monic) irreducible factorization of f(p, p,)(R). Write
a; = [Qi, R + y], which is an ideal of Ok for 1 <4 < n. As in the proof
of Theorem 2.3, we can show that the ideal classes (a1), (ajas2),. .., (ajas
.-+ a,) are mutually distinct, so that we get the result. ]

THEOREM 3.4. p(p, p,) =1 if and only if hyx = 1.

Proof. By Theorem 3.3, it is clear that if hx = 1, then pp, p,) = 1.
Now we will show that if pp, p,) = 1, then hx = 1. Suppose that
hx > 2. Let p be a non-principal ideal having the smallest deg Np. Then
we can see that p is a prime ideal and Np = P is a monic irreducible with
deg P <degG—1< % — 1. We may write p = [P, R+ y] for some
R € A with deg R < deg P and P|N(R + y). Since deg R < deg P <
M —1, we have deg N (R+y) = deg(R?>+GR+ D1Q) < 2deg D1Q.
Since p(p,,p,) = 1, f(py,p:)(R) = N(R+y) = R* + GR+ D;Q must be
an irreducible. Hence, P = N(R+vy) and p = [P,R+y] = (R+y) is
principal, which is a contradiction. O

THEOREM 3.5. p(p, p,) = 2 if and only if hyx = 2.

Proof. If hi = 2, then pp, p,) < hix =2, so pxg =1 or 2. But, by
Theorem 3.4, we have px = 2. Conversely, we assume that pp, p,) = 2.
Then hx > pp, p,) = 2. Let p,p’ be non-principal prime ideals with
Np = P,Nq = P’ and deg P,deg P’ < w — 1. Then we can show
that P, P’ are monic irreducibles and pp’ is principal. Now, for the rest
of proof, we follow the argument in the proof of Theorem 2.6 to get the
result. O
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