JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 25, No. 2, May 2012

ONO INVARIANTS OF IMAGINARY QUADRATIC FUNCTION FIELDS

JAEHYUN AHN* AND HWANYUP JUNG**

ABSTRACT. In this paper, we define the Ono invariants of imaginary quadratic function fields and obtained several results concerning the relations between the Ono invariants and the class numbers.

1. Introduction

Let K be an imaginary quadratic number field. Let h_K be the class number of K. In [3], Sasaki defined a natural number ρ_K associated to K, which is called the *Ono invariant of* K, and reformulated the Rabinovitch's theorem as $h_K = 1$ if and only if $\rho_K = 1$. He also proved that $h_K \ge \rho_K$ and $h_K = 2$ if and only if $\rho_K = 2$.

The aim of this paper is to define the Ono invariant of imaginary quadratic function field and prove similar results. Let $k = \mathbb{F}_q(t)$ be the rational function field over the finite field \mathbb{F}_q and $\mathbb{A} = \mathbb{F}_q[t]$. Let ∞ be the *infinite place* of k associated to 1/t. Let K be a (geometric) quadratic extension of k. We say that K is *real* if ∞ splits in K and *imaginary* otherwise. Let K be an imaginary quadratic extension of k. Let \mathcal{O}_K be the integral closure of \mathbb{A} in K and h_K be the ideal class number of \mathcal{O}_K . In this paper, following Sasaki [3], we define the Ono invariant ρ_K of Kand prove several similar results.

Received January 25, 2012; Accepted April 17, 2012.

²⁰¹⁰ Mathematics Subject Classification: Primary 11R58, 11R60.

Key words and phrases: imaginary quadratic function fields, Ono invariants, class numbers.

Correspondence should be addressed to Hwanyup Jung, hyjung@chungbuk.ac.kr. This work was supported by the research grant of the Chungbuk National University in 2011.

2. Odd characteristic case

In this section we assume that q is odd. Let γ be a generator of \mathbb{F}_q^* . For any $0 \neq N \in \mathbb{A}$, let sgn(N) denote the leading coefficient of N. Then any imaginary quadratic extension K of k can be written uniquely as $K = k(\sqrt{D})$, where D is a square free of odd degree if ∞ ramifies in K and D is a square free of even degree with $sgn(D) = \gamma$ if ∞ is inert in K. The integral closure \mathcal{O}_K of \mathbb{A} in K is $\mathcal{O}_K = \mathbb{A}[\sqrt{D}]$.

2.1. Ideals

Let \mathcal{N} be the norm map of K into k. Any ideal \mathfrak{a} of \mathcal{O}_K can be written as $\mathfrak{a} = [T, R + S\sqrt{D}] := T\mathbb{A} + (R + S\sqrt{D})\mathbb{A}$, where T is the monic polynomial of the smallest degree which is contained in \mathfrak{a} and Sis the monic polynomial of the smallest degree such that $R + S\sqrt{D} \in \mathfrak{a}$ for some $R \in \mathbb{A}$. Moreover, we may assume that deg $R < \deg T$ and T, Rare divisible by S, and we have $\mathcal{N}\mathfrak{a} = (TS) = TS\mathbb{A}$.

LEMMA 2.1. Let $T, R \in \mathbb{A}$ with T monic. Then the \mathbb{A} -module $[T, R + \sqrt{D}]$ becomes an ideal of \mathcal{O}_K if and only if $T|\mathcal{N}(R + \sqrt{D})$. In this case the followings hold:

- (i) If $T = T_1T_2$, then $[T, R + \sqrt{D}] = [T_1, R + \sqrt{D}][T_2, R + \sqrt{D}]$.
- (ii) If $0 < \deg T < \deg D$, then $[T, R + \sqrt{D}]$ is not a principal ideal.

Proof. Suppose that \mathfrak{a} is an ideal of \mathcal{O}_K . Since $\mathcal{N}(R + \sqrt{D}) = (R + \sqrt{D})(R - \sqrt{D}) \in \mathfrak{a}$, $\mathcal{N}(R + \sqrt{D}) = AT + B(R + \sqrt{D})$ for some $A, B \in \mathbb{A}$. Then B = 0 and $AT = \mathcal{N}(R + \sqrt{D})$. Conversely, assume that $\mathcal{N}(R + \sqrt{D})$ is divisible by T, say $\mathcal{N}(R + \sqrt{D}) = AT$. Then, for any $\alpha = X + Y\sqrt{D} \in \mathcal{O}_K$, we have $\alpha T = (X - YR)T + TY(R + \sqrt{D}) \in \mathfrak{a}$ and $\alpha(R + \sqrt{D}) = -AYT + (X + YR)(R + \sqrt{D}) \in \mathfrak{a}$. Hence \mathfrak{a} is an ideal of \mathcal{O}_K . (i) is obvious. For (ii), we assume that $\mathfrak{a} = [T, R + \sqrt{D}]$ is a principal ideal (α). Then $\alpha = TX + (R + \sqrt{D})Y$ for some $X, Y \in \mathbb{A}$, so $\mathcal{N}\mathfrak{a} = T\mathbb{A} = \mathcal{N}(\alpha)\mathbb{A} = T(TX^2 + 2RXY + AY^2)\mathbb{A}$, where $TA = R^2 - D$. Thus we get $(TX + RY)^2 = DY^2 + cT$ for some $c \in \mathbb{F}_q$. If Y = 0, we have $T^2X^2 = cT$, which is impossible. Suppose $Y \neq 0$. Consider the case that K is a ramified imaginary quadratic extension. Since $\deg T < \deg D$, $\deg(DY^2 + cT) = \deg D + 2 \deg Y$ is odd, but $\deg((TX + RY)^2) = 2 \deg(TX + RY)$ is even, which is a contradiction. Now, consider the case that K is a inert imaginary quadratic extension. Since $cT = (TX + RY)^2 - DY^2$ and D is of even degree, we have $\operatorname{sgn}(D) = \gamma$, $\operatorname{sgn}(TX + RY)^2 = \gamma^{2m}$ and $\operatorname{sgn}(DY^2) =$

 $\begin{array}{l} \gamma^{2n+1} \neq \mathrm{sgn}(TX+RY)^2 \ \text{for some } m,n. \ \text{Thus } \mathrm{deg}((TX+RY)^2-DY^2) = \\ max\{\mathrm{deg}(TX+RY)^2,\mathrm{deg}\,DY^2\} \geq \mathrm{deg}\,DY^2 = \mathrm{deg}\,D+2\,\mathrm{deg}\,Y > \mathrm{deg}\,T, \\ \text{which contradicts to the fact that } \mathrm{deg}\,T < \mathrm{deg}\,D. \end{array}$

LEMMA 2.2. Let $T, R \in \mathbb{A}$ with T monic, $T|\mathcal{N}(R+\sqrt{D})$ and $\deg \mathcal{N}(R+\sqrt{D}) < 2 \deg D$. Then the ideal $[T, R+\sqrt{D}]$ is principal if and only if T = 1 or $T = \mathcal{N}(R+\sqrt{D})$.

Proof. If T = 1, then $[T, R + \sqrt{D}] = [1, \sqrt{D}] = \mathcal{O}_K$, and, if $T = \mathcal{N}(R + \sqrt{D}) = (R + \sqrt{D})(R - \sqrt{D})$, then $[T, R + \sqrt{D}] = (R + \sqrt{D})$. Conversely, let $T' = \mathcal{N}(R + \sqrt{D})/T$, so $TT' = \mathcal{N}(R + \sqrt{D}) = R^2 - D$. Since $\deg(R^2 - D) < 2 \deg D$, $\deg T < \deg D$ or $\deg T' < \deg D$. Since $[T, R + \sqrt{D}][T', R + \sqrt{D}] = [TT', R + \sqrt{D}] = (R + \sqrt{D}), [T', R + \sqrt{D}]$ is also principal. If $\deg T < \deg D$, since $[T, R + \sqrt{D}]$ is principal, T = 1 (by Lemma 2.1 (ii)). If $\deg T' < \deg D$, similarly, T' = 1, so $T = \mathcal{N}(R + \sqrt{D})$.

2.2. Ono invariant ρ_K

Let $\omega(N)$ be the number of irreducible factors (counting multiplicity) of $N \in \mathbb{A}$. Define the polynomial $f_D(\mathbf{x}) = \mathbf{x}^2 - D$. Then the *Ono invariant* ρ_K of K is defined to be

$$\rho_K := \max \left\{ \omega(f_D(R)) : \deg R < \deg D \right\}.$$

THEOREM 2.3. $h_K \ge \rho_K$.

Proof. By definition, $\rho_K = \omega(f_D(R))$ for some R with deg $R < \deg D - 1$. Note that $f_D(R) = R^2 - D = \mathcal{N}(R + \sqrt{D})$ with deg $N(R + \sqrt{D}) < 2 \deg D$. We may assume that $n = \omega(f_D(R)) \ge 1$. Let $f_D(R) = P_1 \cdots P_n$ be the (monic) irreducible factorization of $f_D(R)$. Write $\mathfrak{a}_i = [P_i, R + \sqrt{D}]$, which is an ideal of \mathcal{O}_K for $1 \le i \le n$. We claim that the ideal classes $(\mathfrak{a}_1), (\mathfrak{a}_1\mathfrak{a}_2), \ldots, (\mathfrak{a}_1\mathfrak{a}_2\cdots\mathfrak{a}_n)$ are mutually distinct. Then $h_K \ge n = \rho_K$ follows immediately. It remains to prove the claim. Assume that $(\mathfrak{a}_1\mathfrak{a}_2\cdots\mathfrak{a}_i) = (\mathfrak{a}_1\mathfrak{a}_2\cdots\mathfrak{a}_j)$ for some i < j. Then $(\mathfrak{a}_{i+1}\cdots\mathfrak{a}_j) = ([P_{i+1}\cdots P_j, R + \sqrt{D}]) = 1$, so $[P_{i+1}\cdots P_j, R + \sqrt{D}]$ is a principal ideal. But, taking $T = P_{i+1}\cdots P_j |f_D(R) = N(R + \sqrt{D})$, we have that $[T, R + \sqrt{D}] = [P_{i+1}\cdots P_j, R + \sqrt{D}]$ is a principal ideal with $T \ne 1, N(R + \sqrt{D})$, which contradicts to Lemma 2.2.

LEMMA 2.4. (Minkowski's Lemma) Any ideal class of K contains an integral ideal \mathfrak{a} such that $N\mathfrak{a} \leq g_K$, where g_K is the genus of K. Note that the genus g_K of $K = k(\sqrt{D})$ is given by $g_K = \frac{\deg D - 1}{2}$ if ∞ ramifies in K and $g_K = \frac{\deg D - 2}{2}$ if ∞ is inert in K.

THEOREM 2.5. $\rho_K = 1$ if and only if $h_K = 1$.

Proof. By Theorem 2.3, it is clear that if $h_K = 1$, then $\rho_K = 1$. Now we will show that if $\rho_K = 1$, then $h_K = 1$. Suppose that $h_K \ge 2$. Let \mathfrak{p} be a non-principal ideal having the smallest deg $N\mathfrak{p}$. It can be shown that \mathfrak{p} is a prime ideal and $N\mathfrak{p} = P$ is a monic irreducible. By Lemma 2.4, we have deg $P \le \frac{\deg D - 1}{2}$. Write $\mathfrak{p} = [P, R + \sqrt{D}]$ for some $R \in \mathbb{A}$ with deg $R < \deg P$ and $P|\mathcal{N}(R + \sqrt{D})$. Then deg $N(R + \sqrt{D}) = \deg(R^2 - D) < 2 \deg D$. Since $\rho_K = 1$, $f_D(R) = N(R + \sqrt{D}) = R^2 - D$ must be an irreducible. Hence, $P = \mathcal{N}(R + \sqrt{D})$ and $\mathfrak{p} = [P, R + \sqrt{D}] = (R + \sqrt{D})$ is principal, which is a contradiction. \Box

THEOREM 2.6. $\rho_K = 2$ if and only if $h_K = 2$.

Proof. If $h_K = 2$, then $\rho_K \leq h_K = 2$, so $\rho_K = 1$ or 2. But, by Theorem 2.5, we have $\rho_K = 2$. Conversely, assume that $\rho_K = 2$. Then $h_K \geq \rho_K = 2$. Let $\mathfrak{p}, \mathfrak{q}$ be non-principal prime ideals with $N\mathfrak{p} = P, N\mathfrak{q} = Q$ and deg P, deg $Q \leq \frac{\deg D - 1}{2}$. Then P, Q are monic irreducible ones. We can show that \mathfrak{pq} is principal.

Now we will show that every ideal class is of order ≤ 2 . Let \mathfrak{p} be an ideal such that \mathfrak{p}^2 is non-principal and has the smallest degree. Then \mathfrak{p} is a prime ideal and $N\mathfrak{p} = P$ is a monic irreducible with deg $P \leq \frac{\deg D - 1}{2}$. By the above argument, \mathfrak{p}^2 is principal. Thus, every ideal class of K is of order ≤ 2 , so the ideal class group of K is an elementary abelian 2-group. Now suppose $h_K \geq 4$. Let \mathfrak{p} be a non-principal ideal having the smallest degree and \mathfrak{q} a non-principal ideal such that \mathfrak{q} is not equivalent to \mathfrak{p} and has the smallest degree. As above, $\mathfrak{p}\mathfrak{q}$ is principal. Since $\mathfrak{p}^2, \mathfrak{q}^2$ are principal, \mathfrak{q} is equivalent to \mathfrak{p} , which is a contradiction. Therefore $h_K = 2$.

3. Even characteristic case

In this section we assume that q is even. Any quadratic extension K of k can be written as $K = k(\alpha)$, where α is a root of $\mathbf{x}^2 + \mathbf{x} = \frac{D_1}{D_2}$ with $D_1 \in \mathbb{A}, D_2 \in \mathbb{A}^+, \operatorname{gcd}(D_1, D_2) = 1$ ([1, 2]). Let $\wp(\mathbf{x}) = \mathbf{x}^2 + \mathbf{x}$ be the Artin-Schreier operator. We say that $u = \frac{D_1}{D_2}$ is normalized if it satisfies the following conditions: (i) if $D_2 = \prod_{i=1}^s P_i^{e_i}$, then each e_i is odd, (ii) if $\deg D_1 > \deg D_2$, then $\deg D_1 - \deg D_2$ is odd, (iii)

286

if deg $D_1 = \deg D_2$, then $sgn(D_1) \notin \wp(\mathbb{F}_q)$. We say that the extension K/k is real, inert imaginary or ramified imaginary according as ∞ splits, inert or ramifies in K. Then, the extension K/k is real, inert imaginary or ramified imaginary according as deg $D_1 < \deg D_2$, deg $D_1 = \deg D_2$ or deg $D_1 > \deg D_2$.

Let $G = G(D_1/D_2) = \prod_{i=1}^{s} P_i^{(e_i+1)/2}$, $Q = Q(D_1/D_2) = \prod_{i=1}^{s} P_i$ and $y = G\alpha$. Then $\mathcal{O}_K = \mathbb{A}[y] = \mathbb{A} + y\mathbb{A} = [1, y]$ is the integral closure of \mathbb{A} in K. Note that y is a zero of $\mathbf{x}^2 + G\mathbf{x} + D_1Q = 0$. In addition, a prime P of \mathbb{A} is ramified in K if and only if P divides G, and $g(K) = \deg G - 1$ by [4, Prop. III.7.8.(d)].

3.1. Ideals

For any integral ideal \mathfrak{a} of \mathcal{O}_K , we have $\mathfrak{a} = [T, R + Sy] = \mathbb{A} \cdot T + \mathbb{A} \cdot (R + Sy)$, where T is the monic polynomial of the smallest degree which is contained in \mathfrak{a} and S is the monic polynomial of the smallest degree such that $R + SG\alpha \in \mathfrak{a}$ for some $R \in \mathbb{A}$. Moreover, we may assume that deg $R < \deg T$ and T, R are divisible by S, and $\mathcal{N}\mathfrak{a} = (TS) = TS\mathbb{A}$.

The following two lemmas are even characteristic version of Lemma 2.1 and Lemma 2.2, whose proofs are almost the same as those ones in these lemmas.

LEMMA 3.1. Let $T, R \in \mathbb{A}$ with T monic. Then the \mathbb{A} -module [T, R + y] becomes an ideal of \mathcal{O}_K if and only if $T|\mathcal{N}(R+y) = R^2 + RG + D_1Q$. In this case the followings hold:

(i) If $T = T_1T_2$, then $[T, R + y] = [T_1, R + y][T_2, R + y]$

(ii) If $0 < \deg T < \deg D_1Q$, then [T, R + y] is not a principal ideal.

LEMMA 3.2. Let $T, R \in \mathbb{A}$ with T monic, $T|\mathcal{N}(R+y)$ and deg $\mathcal{N}(R+y) < 2 \deg D_1 Q$. Then the ideal [T, R+y] is principal if and only if T = 1 or $T = \mathcal{N}(R+y)$.

3.2. Ono invariant of K

Define the polynomial $f_{(D_1,D_2)}(\mathbf{x}) = \mathbf{x}^2 + G\mathbf{x} + D_1Q$. Then the Ono invariant $\rho_{(D_1,D_2)}$ of K is defined to be

$$\rho_{(D_1,D_2)} := \max \left\{ \omega(f_{(D_1,D_2)}(R)) : \deg R < \deg D_1 Q \right\}.$$

THEOREM 3.3. $h_K \ge \rho_{(D_1, D_2)}$.

Proof. By definition, $\rho_{(D_1,D_2)} = \omega(f_{(D_1,D_2)}(R))$ for some R with $\deg R < \deg D_1Q - 1$. Note that $f_{(D_1,D_2)}(R) = R^2 + GR + D_1Q = \mathcal{N}(R+y)$ and $\deg \mathcal{N}(R+y) < 2 \deg D_1Q$ because $\deg G = \deg D_2Q/2 \leq \mathcal{N}(R+y)$

deg $D_1Q/2$. We may assume that $n = \omega(f_{(D_1,D_2)}(R)) \ge 1$. Let $f_{(D_1,D_2)}(R)$ = $Q_1 \cdots Q_n$ be the (monic) irreducible factorization of $f_{(D_1,D_2)}(R)$. Write $\mathfrak{a}_i = [Q_i, R + y]$, which is an ideal of \mathcal{O}_K for $1 \le i \le n$. As in the proof of Theorem 2.3, we can show that the ideal classes $(\mathfrak{a}_1), (\mathfrak{a}_1\mathfrak{a}_2), \ldots, (\mathfrak{a}_1\mathfrak{a}_2), \cdots, (\mathfrak{a}_n\mathfrak{a}_n)$ are mutually distinct, so that we get the result. \Box

THEOREM 3.4. $\rho_{(D_1,D_2)} = 1$ if and only if $h_K = 1$.

Proof. By Theorem 3.3, it is clear that if $h_K = 1$, then $\rho_{(D_1,D_2)} = 1$. Now we will show that if $\rho_{(D_1,D_2)} = 1$, then $h_K = 1$. Suppose that $h_K \ge 2$. Let \mathfrak{p} be a non-principal ideal having the smallest deg $N\mathfrak{p}$. Then we can see that \mathfrak{p} is a prime ideal and $N\mathfrak{p} = P$ is a monic irreducible with deg $P \le \deg G - 1 \le \frac{\deg D_1 Q}{2} - 1$. We may write $\mathfrak{p} = [P, R + y]$ for some $R \in \mathbb{A}$ with deg $R < \deg P$ and $P|\mathcal{N}(R + y)$. Since deg $R < \deg P \le \frac{\deg D_1 Q}{2} - 1$, we have deg $\mathcal{N}(R+y) = \deg(R^2 + GR + D_1Q) < 2 \deg D_1Q$. Since $\rho_{(D_1,D_2)} = 1$, $f_{(D_1,D_2)}(R) = \mathcal{N}(R+y) = R^2 + GR + D_1Q$ must be an irreducible. Hence, $P = \mathcal{N}(R+y)$ and $\mathfrak{p} = [P, R+y] = (R+y)$ is principal, which is a contradiction. □

THEOREM 3.5. $\rho_{(D_1,D_2)} = 2$ if and only if $h_K = 2$.

Proof. If $h_K = 2$, then $\rho_{(D_1,D_2)} \leq h_K = 2$, so $\rho_K = 1$ or 2. But, by Theorem 3.4, we have $\rho_K = 2$. Conversely, we assume that $\rho_{(D_1,D_2)} = 2$. Then $h_K \geq \rho_{(D_1,D_2)} = 2$. Let $\mathfrak{p}, \mathfrak{p}'$ be non-principal prime ideals with $N\mathfrak{p} = P, N\mathfrak{q} = P'$ and deg $P, \deg P' \leq \frac{\deg D_1 Q}{2} - 1$. Then we can show that P, P' are monic irreducibles and \mathfrak{pp}' is principal. Now, for the rest of proof, we follow the argument in the proof of Theorem 2.6 to get the result. \Box

References

- Y-M J. Chen, and J. Yu, On class number relations in characteristic two, Math. Z. 259 (2008), no. 1, 197–216.
- [2] S. Hu and Y. Li, The genus fields of Artin-Schreier extensions, Finite Fields Appl, 16 (2010), no. 4, 255–264.
- [3] R. Sasaki, On a lower bound for the class number of an imaginary quadratic field, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), no. 1, 37–39.
- [4] H. Stichtenoth, Algebraic function fields and codes, Springer-Verlag, 1993.

288

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: jhahn@cnu.ac.kr

**

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: hyjung@chungbuk.ac.kr 289