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ONO INVARIANTS OF IMAGINARY
QUADRATIC FUNCTION FIELDS

Jaehyun Ahn* and Hwanyup Jung**

Abstract. In this paper, we define the Ono invariants of imagi-
nary quadratic function fields and obtained several results concern-
ing the relations between the Ono invariants and the class numbers.

1. Introduction

Let K be an imaginary quadratic number field. Let hK be the class
number of K. In [3], Sasaki defined a natural number ρK associated
to K, which is called the Ono invariant of K, and reformulated the
Rabinovitch’s theorem as hK = 1 if and only if ρK = 1. He also proved
that hK ≥ ρK and hK = 2 if and only if ρK = 2.

The aim of this paper is to define the Ono invariant of imaginary
quadratic function field and prove similar results. Let k = Fq(t) be the
rational function field over the finite field Fq and A = Fq[t]. Let∞ be the
infinite place of k associated to 1/t. Let K be a (geometric) quadratic
extension of k. We say that K is real if ∞ splits in K and imaginary
otherwise. Let K be an imaginary quadratic extension of k. Let OK be
the integral closure of A in K and hK be the ideal class number of OK .
In this paper, following Sasaki [3], we define the Ono invariant ρK of K
and prove several similar results.
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2. Odd characteristic case

In this section we assume that q is odd. Let γ be a generator of F∗q .
For any 0 6= N ∈ A, let sgn(N) denote the leading coefficient of N .
Then any imaginary quadratic extension K of k can be written uniquely
as K = k(

√
D), where D is a square free of odd degree if ∞ ramifies in

K and D is a square free of even degree with sgn(D) = γ if ∞ is inert
in K. The integral closure OK of A in K is OK = A[

√
D].

2.1. Ideals

Let N be the norm map of K into k. Any ideal a of OK can be
written as a = [T, R + S

√
D] := TA + (R + S

√
D)A, where T is the

monic polynomial of the smallest degree which is contained in a and S
is the monic polynomial of the smallest degree such that R + S

√
D ∈ a

for some R ∈ A. Moreover, we may assume that deg R < deg T and T, R
are divisible by S, and we have Na = (TS) = TSA.

Lemma 2.1. Let T, R ∈ A with T monic. Then the A-module [T,R+√
D] becomes an ideal of OK if and only if T |N (R +

√
D). In this case

the followings hold:

(i) If T = T1T2, then [T,R +
√

D] = [T1, R +
√

D][T2, R +
√

D].
(ii) If 0 < deg T < deg D, then [T, R +

√
D] is not a principal ideal.

Proof. Suppose that a is an ideal of OK . Since N (R +
√

D) = (R +√
D)(R −√D) ∈ a, N (R +

√
D) = AT + B(R +

√
D) for some A,B ∈

A. Then B = 0 and AT = N (R +
√

D). Conversely, assume that
N (R +

√
D) is divisible by T , say N (R +

√
D) = AT . Then, for any

α = X + Y
√

D ∈ OK , we have αT = (X − Y R)T + TY (R +
√

D) ∈ a

and α(R +
√

D) = −AY T + (X + Y R)(R +
√

D) ∈ a. Hence a is
an ideal of OK . (i) is obvious. For (ii), we assume that a = [T, R +√

D] is a principal ideal (α). Then α = TX + (R +
√

D)Y for some
X,Y ∈ A, so Na = TA = N (α)A = T

(
TX2 + 2RXY + AY 2

)
A, where

TA = R2 − D. Thus we get (TX + RY )2 = DY 2 + cT for some c ∈
Fq. If Y = 0, we have T 2X2 = cT , which is impossible. Suppose
Y 6= 0. Consider the case that K is a ramified imaginary quadratic
extension. Since deg T < deg D, deg(DY 2 + cT ) = deg D + 2deg Y
is odd, but deg((TX + RY )2) = 2 deg(TX + RY ) is even, which is
a contradiction. Now, consider the case that K is a inert imaginary
quadratic extension. Since cT = (TX + RY )2 −DY 2 and D is of even
degree, we have sgn(D) = γ, sgn(TX + RY )2 = γ2m and sgn(DY 2) =
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γ2n+1 6= sgn(TX+RY )2 for some m,n. Thus deg((TX+RY )2−DY 2) =
max{deg(TX +RY )2, deg DY 2} ≥ deg DY 2 = deg D+2deg Y > deg T ,
which contradicts to the fact that deg T < deg D.

Lemma 2.2. Let T,R ∈ A with T monic, T |N (R+
√

D) and degN (R+√
D) < 2 deg D. Then the ideal [T,R +

√
D] is principal if and only if

T = 1 or T = N (R +
√

D).

Proof. If T = 1, then [T, R +
√

D] = [1,
√

D] = OK , and, if T =
N (R +

√
D) = (R +

√
D)(R − √D), then [T, R +

√
D] = (R +

√
D).

Conversely, let T ′ = N (R +
√

D)/T , so TT ′ = N (R +
√

D) = R2 −D.
Since deg(R2 −D) < 2 deg D, deg T < deg D or deg T ′ < deg D. Since
[T, R +

√
D][T ′, R +

√
D] = [TT ′, R +

√
D] = (R +

√
D), [T ′, R +

√
D]

is also principal. If deg T < deg D, since [T, R +
√

D] is principal,
T = 1 (by Lemma 2.1 (ii)). If deg T ′ < deg D, similarly, T ′ = 1, so
T = N (R +

√
D).

2.2. Ono invariant ρK

Let ω(N) be the number of irreducible factors (counting multiplicity)
of N ∈ A. Define the polynomial fD(x) = x2 − D. Then the Ono
invariant ρK of K is defined to be

ρK := max
{
ω(fD(R)) : deg R < deg D

}
.

Theorem 2.3. hK ≥ ρK .

Proof. By definition, ρK = ω(fD(R)) for some R with deg R <

deg D − 1. Note that fD(R) = R2 −D = N (R +
√

D) with deg N(R +√
D) < 2 deg D. We may assume that n = ω(fD(R)) ≥ 1. Let fD(R) =

P1 · · ·Pn be the (monic) irreducible factorization of fD(R). Write ai =
[Pi, R +

√
D], which is an ideal of OK for 1 ≤ i ≤ n. We claim

that the ideal classes (a1), (a1a2), . . . , (a1a2 · · · an) are mutually distinct.
Then hK ≥ n = ρK follows immediately. It remains to prove the
claim. Assume that (a1a2 · · · ai) = (a1a2 · · · aj) for some i < j. Then
(ai+1 · · · aj) = ([Pi+1 · · ·Pj , R +

√
D]) = 1, so [Pi+1 · · ·Pj , R +

√
D] is a

principal ideal. But, taking T = Pi+1 · · ·Pj |fD(R) = N(R +
√

D), we
have that [T, R +

√
D] = [Pi+1 · · ·Pj , R +

√
D] is a principal ideal with

T 6= 1, N(R +
√

D), which contradicts to Lemma 2.2.

Lemma 2.4. (Minkowski’s Lemma) Any ideal class of K contains
an integral ideal a such that Na ≤ gK , where gK is the genus of K.
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Note that the genus gK of K = k(
√

D) is given by gK = deg D−1
2 if

∞ ramifies in K and gK = deg D−2
2 if ∞ is inert in K.

Theorem 2.5. ρK = 1 if and only if hK = 1.

Proof. By Theorem 2.3, it is clear that if hK = 1, then ρK = 1. Now
we will show that if ρK = 1, then hK = 1. Suppose that hK ≥ 2. Let p be
a non-principal ideal having the smallest deg Np. It can be shown that
p is a prime ideal and Np = P is a monic irreducible. By Lemma 2.4,
we have deg P ≤ deg D−1

2 . Write p = [P, R +
√

D] for some R ∈ A with
deg R < deg P and P |N (R +

√
D). Then deg N(R +

√
D) = deg(R2 −

D) < 2 deg D. Since ρK = 1, fD(R) = N(R+
√

D) = R2−D must be an
irreducible. Hence, P = N (R +

√
D) and p = [P,R +

√
D] = (R +

√
D)

is principal, which is a contradiction.

Theorem 2.6. ρK = 2 if and only if hK = 2.

Proof. If hK = 2, then ρK ≤ hK = 2, so ρK = 1 or 2. But, by
Theorem 2.5, we have ρK = 2. Conversely, assume that ρK = 2. Then
hK ≥ ρK = 2. Let p, q be non-principal prime ideals with Np = P, Nq =
Q and deg P,deg Q ≤ deg D−1

2 . Then P, Q are monic irreducible ones.
We can show that pq is principal.

Now we will show that every ideal class is of order ≤ 2. Let p be an
ideal such that p2 is non-principal and has the smallest degree. Then p is
a prime ideal and Np = P is a monic irreducible with deg P ≤ deg D−1

2 .
By the above argument, p2 is principal. Thus, every ideal class of K
is of order ≤ 2, so the ideal class group of K is an elementary abelian
2-group. Now suppose hK ≥ 4. Let p be a non-principal ideal having the
smallest degree and q a non-principal ideal such that q is not equivalent
to p and has the smallest degree. As above, pq is principal. Since p2, q2

are principal, q is equivalent to p, which is a contradiction. Therefore
hK = 2.

3. Even characteristic case

In this section we assume that q is even. Any quadratic extension
K of k can be written as K = k(α), where α is a root of x2 + x = D1

D2

with D1 ∈ A, D2 ∈ A+, gcd(D1, D2) = 1 ([1, 2]). Let ℘(x) = x2 + x
be the Artin-Schreier operator. We say that u = D1

D2
is normalized if

it satisfies the following conditions: (i) if D2 =
∏s

i=1 P ei
i , then each

ei is odd, (ii) if deg D1 > deg D2, then deg D1 − deg D2 is odd, (iii)
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if deg D1 = deg D2, then sgn(D1) 6∈ ℘(Fq). We say that the extension
K/k is real, inert imaginary or ramified imaginary according as∞ splits,
inert or ramifies in K. Then, the extension K/k is real, inert imaginary
or ramified imaginary according as deg D1 < deg D2, deg D1 = deg D2

or deg D1 > deg D2.
Let G = G(D1/D2) =

∏s
i=1 P

(ei+1)/2
i , Q = Q(D1/D2) =

∏s
i=1 Pi and

y = Gα. Then OK = A[y] = A+ yA = [1, y] is the integral closure of A
in K. Note that y is a zero of x2 + Gx+ D1Q = 0. In addition, a prime
P of A is ramified in K if and only if P divides G, and g(K) = deg G−1
by [4, Prop. III.7.8.(d)].

3.1. Ideals

For any integral ideal a of OK , we have a = [T,R + Sy] = A · T +A ·
(R+Sy), where T is the monic polynomial of the smallest degree which
is contained in a and S is the monic polynomial of the smallest degree
such that R+SGα ∈ a for some R ∈ A. Moreover, we may assume that
deg R < deg T and T, R are divisible by S, and Na = (TS) = TSA.

The following two lemmas are even characteristic version of Lemma
2.1 and Lemma 2.2, whose proofs are almost the same as those ones in
these lemmas.

Lemma 3.1. Let T, R ∈ A with T monic. Then the A-module [T,R+
y] becomes an ideal of OK if and only if T |N (R+y) = R2 +RG+D1Q.
In this case the followings hold:

(i) If T = T1T2, then [T,R + y] = [T1, R + y][T2, R + y]
(ii) If 0 < deg T < deg D1Q, then [T, R + y] is not a principal ideal.

Lemma 3.2. Let T,R ∈ A with T monic, T |N (R+y) and degN (R+
y) < 2 deg D1Q. Then the ideal [T, R + y] is principal if and only if
T = 1 or T = N (R + y).

3.2. Ono invariant of K

Define the polynomial f(D1,D2)(x) = x2 + Gx + D1Q. Then the Ono
invariant ρ(D1,D2) of K is defined to be

ρ(D1,D2) := max
{
ω(f(D1,D2)(R)) : deg R < deg D1Q

}
.

Theorem 3.3. hK ≥ ρ(D1,D2).

Proof. By definition, ρ(D1,D2) = ω(f(D1,D2)(R)) for some R with
deg R < deg D1Q − 1. Note that f(D1,D2)(R) = R2 + GR + D1Q =
N (R+y) and degN (R+y) < 2 deg D1Q because deg G = deg D2Q/2 ≤
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deg D1Q/2. We may assume that n = ω(f(D1,D2)(R)) ≥ 1. Let f(D1,D2)(R)
= Q1 · · ·Qn be the (monic) irreducible factorization of f(D1,D2)(R). Write
ai = [Qi, R + y], which is an ideal of OK for 1 ≤ i ≤ n. As in the proof
of Theorem 2.3, we can show that the ideal classes (a1), (a1a2), . . . , (a1a2

· · · an) are mutually distinct, so that we get the result.

Theorem 3.4. ρ(D1,D2) = 1 if and only if hK = 1.

Proof. By Theorem 3.3, it is clear that if hK = 1, then ρ(D1,D2) = 1.
Now we will show that if ρ(D1,D2) = 1, then hK = 1. Suppose that
hK ≥ 2. Let p be a non-principal ideal having the smallest deg Np. Then
we can see that p is a prime ideal and Np = P is a monic irreducible with
deg P ≤ deg G− 1 ≤ deg D1Q

2 − 1. We may write p = [P, R + y] for some
R ∈ A with deg R < deg P and P |N (R + y). Since deg R < deg P ≤
deg D1Q

2 −1, we have degN (R+y) = deg(R2 +GR+D1Q) < 2 deg D1Q.
Since ρ(D1,D2) = 1, f(D1,D2)(R) = N (R + y) = R2 + GR + D1Q must be
an irreducible. Hence, P = N (R + y) and p = [P,R + y] = (R + y) is
principal, which is a contradiction.

Theorem 3.5. ρ(D1,D2) = 2 if and only if hK = 2.

Proof. If hK = 2, then ρ(D1,D2) ≤ hK = 2, so ρK = 1 or 2. But, by
Theorem 3.4, we have ρK = 2. Conversely, we assume that ρ(D1,D2) = 2.
Then hK ≥ ρ(D1,D2) = 2. Let p, p′ be non-principal prime ideals with
Np = P, Nq = P ′ and deg P, deg P ′ ≤ deg D1Q

2 − 1. Then we can show
that P, P ′ are monic irreducibles and pp′ is principal. Now, for the rest
of proof, we follow the argument in the proof of Theorem 2.6 to get the
result.
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